应考方略 数学有数

样的命题有效地避免了题海战术,真正地考查了考生应用知识的能力.

解析: (1) f(x)的定义域为 $(0,+\infty)$, $f'(x) = -\frac{1}{x^2} - 1 + \frac{a}{x} = \frac{-x^2 + ax - 1}{x^2}$. 设 $g(x) = -x^2 + ax - 1$, 而函数 $g(x) = -x^2 + ax - 1$ 的图像开口向下,恒过定点 (0,-1), $\Delta = a^2 - 4$.

- (i) 当 $\Delta = a^2 4 \le 0$ 时,即 $-2 \le a \le 2$ 时, $g(x) = -x^2 + ax 1 \le 0$ 在 $(0, +\infty)$ 上恒成立,所以 $f'(x) \le 0$ 在 $(0, +\infty)$ 恒成立,所以f(x)在 $(0, +\infty)$ 单调递减.
- (ii) 当 $\Delta = a^2 4 > 0$ 时,即 a > 2 或 a < -2 时,由 $g(x) = -x^2 + ax 1 = 0$,即 f'(x) = 0 解得 $x_1 = \frac{a \sqrt{a^2 4}}{2}$, $x_2 = \frac{a + \sqrt{a^2 4}}{2}$,由 $g(x) = -x^2 + ax 1 = 0$ 可知: $x_1 + x_2 = a$, $x_1 x_2 = 1$,当 a < -2 时, $x_1 < 0$, $x_2 < 0$,因此 可得 f'(x) < 0 在 (0, $+\infty$)上恒成立,所以 f(x) 在 (0, $+\infty$)单调 递减.当 a > 2 时,由 $x_1 + x_2 = a$, $x_1 x_2 = 1$ 可得 $x_1 > 0$, $x_2 > 0$,因此 可得当 $x \in (0$, $\frac{a \sqrt{a^2 4}}{2}$) $\cup (\frac{a + \sqrt{a^2 4}}{2}, +\infty)$ 时, f'(x) < 0; 当 $x \in (\frac{a \sqrt{a^2 4}}{2}, \frac{a + \sqrt{a^2 4}}{2})$ 时, f'(x) > 0.所以 f(x) 在 $(0, \frac{a \sqrt{a^2 4}}{2})$, $(\frac{a + \sqrt{a^2 4}}{2}, +\infty)$ 单调递减,在 $(\frac{a \sqrt{a^2 4}}{2}, \frac{a + \sqrt{a^2 4}}{2})$ 单调递增.

综上所述,当 $a \le 2$ 时,f(x)在(0,+∞)单调递减;当 a > 2 时,f(x)在(0, $\frac{a - \sqrt{a^2 - 4}}{2}$)和($\frac{a + \sqrt{a^2 - 4}}{2}$,+∞)上 单调递减,在($\frac{a - \sqrt{a^2 - 4}}{2}$, $\frac{a + \sqrt{a^2 - 4}}{2}$)单调递增.

(2) 解析 1: 当 f(x)存在两个极值点 x_1,x_2 时,由(1)可知当 a>2时,f(x)存在两个极值点 x_1,x_2 ,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2} < a-2$ 成立,而由(1)可知: $x_1+x_2=a,x_1x_2=1$,不妨设 $0< x_1< 1< x_2$,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2} < a-2$ 成立,等价于证明 $f(x_1)-f(x_2)>(a-2)(x_1-x_2)$ 成立,即证明 $f(x_1)-(a-2)x_1>f(x_2)-(a-2)x_2$,其中 x_1,x_2 是方程 $g(x)=-x^2+ax-1=0$ 的两个根,设函数 h(t)=f(t)-(a-2)t,则满足 $-t^2+at-1=0$,即可 $t+\frac{1}{t}=a,h'(t)=f'(t)-(a-2)=-\frac{1}{t^2}-1+a\cdot\frac{1}{t}-(a-2)=-\frac{1}{t^2}-1+(t+\frac{1}{t})\cdot\frac{1}{t}-(t+\frac{1}{t}-2)=2-(t+\frac{1}{t})$,由(1)可知当 a>2 时,f(x)存在两个极值点 x_1,x_2 ,所以 $t+\frac{1}{t}=a>2$,所以 $h'(t)=2-(t+\frac{1}{t})<0$,h(t)=f(t)-(a-2)t 在(0,+∞)单调递减,又因 为 $x_2>x_1>0$,所以 $h(x_2)<h(x_1)$,即 $f(x_1)-(a-2)x_1>f(x_2)-(a-2)x_2$,因此可得 $f(x_1)-f(x_2) < a-2$,不等式得证.

解析 2: 当f(x)存在两个极值点 x_1, x_2 时,由 (1)可知

当 a>2 时,f(x)存在两个极值点 x_1 , x_2 ,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2} < a-2$ 成立,而由(1)可知: $x_1+x_2=a$, $x_1x_2=1$,不妨设 $0< x_1<1< x_2$,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2} < a-2$ 成立,等价于证明 $f(x_1)-f(x_2)>(a-2)$ (x_1-x_2) 成立,由 $x_1x_2=1$ 可得 $x_2=\frac{1}{x_1}$,即只需证明 $f(x_1)-f(\frac{1}{x_1})>(a-2)(x_1-\frac{1}{x_2})$,

即证 $\frac{1}{x_1}$ - x_1 +aln x_1 - $(x_1$ - $\frac{1}{x_1}$ +aln $\frac{1}{x_1})>(a-2)(x_1$ - $\frac{1}{x_1})$,化简可得 2aln x_1 + $a(\frac{1}{x_1}$ - $x_1)>0$,再由 a>2,因此只需证 2ln x_1 + $(\frac{1}{x_1}$ - $x_1)>0$ 成立即可,设函数 h(t)=2lnt+ $(\frac{1}{t}$ -t),由(1)可知 $0<x_1<1$,即 0<t<1,因此得 $h'(t)=\frac{2}{t}-\frac{1}{t^2}-1=-\frac{(t-1)^2}{t^2}<0$,所以 h(t)在(0,1)上单调递减,又因为 h(1)=0,所以 h(t)>h(1)=0,所以得 2ln x_1 + $(\frac{1}{x_1}$ - $x_1)>0$ 在(0,1)上恒成立,

即 $f(x_1)-f(x_2)>(a-2)(x_1-x_2)$,因此可得 $\frac{f(x_1)-f(x_2)}{x_1-x_2}< a-2$ 成立.

解析 3: 由(1)可知只有当 a>2 时,f(x)才有两个极值点 x_1, x_2 ,(不妨设 $0<x_1< x_2$),因此可得: $x_1+x_2=a$, $x_1x_2=1$,所以有 $x_2>1$,因此有 $\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{1}{x_1}-x_1+a\ln x_1-\frac{1}{x_2}+x_2-a\ln x_2}{x_1-x_2}=a\cdot\frac{\ln x_1-\ln x_2}{x_1-x_2} < 2$,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2}<1\Leftrightarrow \ln\frac{x_2}{x_1}< x_2-x_1\Leftrightarrow \ln x_2^2< x_2-\frac{1}{x_2}$ $\Leftrightarrow 2\ln x_2-x_2+\frac{1}{x_2}<0$ 成立,(同样,在这里可以考虑将 $\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{1}{x_1-x_2}-x_1+a\ln x_1-\frac{1}{x_2}+x_2-a\ln x_2}{x_1-x_2}=a\cdot\frac{\ln x_1-\ln x_2}{x_1-x_2}-2=\frac{a}{x_1-x_2}\ln\frac{x_1}{x_2}-2$,要证明 $\frac{f(x_1)-f(x_2)}{x_1-x_2}< a-2$ 成立等价于证明 $\frac{a}{x_1-x_2}\ln\frac{x_1}{x_2}-2< a-2$,即证明 $\ln\frac{x_1}{x_2}>x_1-x_2$,所以只需证明 $\ln x_1^2>x_1-\frac{1}{x_1}$ 成立,即证明 $2\ln x_1-x_1+\frac{1}{x_1}>0$ 成立,下面构造函数和以下一样,过程略)令 $h(t)=2\ln t-t+\frac{1}{t}$ (t>1), $h'(t)=\frac{2}{t}-1-\frac{1}{t^2}=-\frac{(t-1)^2}{t^2}<0$,故 h(t) 在 $(1,+\infty)$ 递减,从而 h(t)<h(1)=0,则有 $2\ln x_2-x_2+\frac{1}{x_2}<0$ 成立,所以 $\frac{f(x_1)-f(x_2)}{x_1-x_2}< a-2$ 成立.

解析 4: 由(1)可知只有当 a>2 时,f(x)才有两个极值点 x_1,x_2 ,(不妨设 $0<x_1<x_2$),并且由韦达定理可得: $x_1+x_2=a,x_1x_2=1$, 所以有 $x_2>1$,因此有 $\frac{f(x_1)-f(x_2)}{x_1-x_2}=\frac{\frac{1}{x_1}-x_1+alnx_1-\frac{1}{x_2}+x_2-alnx_2}{x_1-x_2}=$